How to run the dry filesystem check on ext4 and xfs ?

In this article I am going to show how to run the experimental file system  check on the filesystem like ext3,ext4 and XFS.
In these examples I have shown the usage for ext4 and XFS. Procedure for ext3 is same like ext4.

Step 1 : I have one file system mounted on /mnt3. I want to run the file system check on it. But due to fear of losing the data. I want to run the experimental check first before running it on original filesystem.

[root@Node-1-65 ~]# df -h
Filesystem                      Size  Used Avail Use% Mounted on
/dev/mapper/vg_node165-lv_root   11G  2.1G  7.6G  22% /
tmpfs                           489M     0  489M   0% /dev/shm
/dev/vda1                       485M   34M  426M   8% /boot
/dev/vdb2                        98M  5.6M   87M   6% /mnt2
/dev/vdb3                        98M  5.6M   87M   6% /mnt3

Step 2 : I have unmounted the file system and then created the e2image for the file system.

The e2image creates the image file as a sparse file, which will make the file size smaller than the total filesystem size.

[root@Node-1-65 ~]# umount /mnt3
[root@Node-1-65 ~]# e2image -r /dev/vdb3 – | bzip2 > /tmp/mnt3.image.e2i.gz
e2image 1.41.12 (17-May-2010)

While compressing the image file, the compression tool used should be aware of sparse files, to avoid it to create a non-sparsed image during file compression. Alternatively it’s possible to use ‘e2image’ command with option ‘-Q’, instead ‘-r’. It will create a QCOW2 image file instead of a normal, or raw image file. A QCOW2 image contains all the information the raw image does, however unlike the raw image it is not sparse. The QCOW2 image minimize the amount of disk space by storing data in special format with pack data closely together, hence avoiding holes while still minimizing size.

Step 3 : The bzip2 tool does not recognise sparse files and will compresses the empty regions of the file as normal data but the compression rate will be very high. When bunzip2 uncompresses the file it will allocate space for the empty data and the resultant image file will be fully allocated.

In this case it is necessary to filter out the empty data with a command like:

[root@Node-1-65 ~]# bzcat /tmp/mnt3.image.e2i.gz | cp –sparse=always /dev/stdin image.e2i

We can verify that file is sparse using below command. We can see the difference between actual size(316KB) and the reserverd size (101MB) approx of filesytsem size.

[root@Node-1-65 ~]# ls -lsh /root/image.e2i
316K -rw——- 1 root root 101M Jan 12 21:35 /root/image.e2i

Step 4 : Now we can loopback that image. We can see that its showing the size of actual file system.

[root@Node-1-65 ~]# mount -o loop /root/image.e2i /mnt
[root@Node-1-65 ~]# df -h /mnt
Filesystem       Size  Used Avail Use% Mounted on
/root/image.e2i   98M  5.6M   87M   6% /mnt

Step 5 : Running file system check on mounted image file.

[root@Node-1-65 ~]# e2fsck -vvv /root/image.e2i
e2fsck 1.41.12 (17-May-2010)
/root/image.e2i is mounted.

WARNING!!!  The filesystem is mounted.   If you continue you ***WILL***
cause ***SEVERE*** filesystem damage.

Do you really want to continue (y/n)? yes

/root/image.e2i: recovering journal
/root/image.e2i: clean, 11/25792 files, 8909/102816 blocks

We can do the same thing for xfs file system as well procedure is bit different.

Step 1 : I have one mounted xfs file system of 1GB. I want to run the experimental or dry filesystem check on this.

[root@vikrant ~]# df -h /new_xfs/
Filesystem                        Size  Used Avail Use% Mounted on
/dev/mapper/vg_storage-xfs_check 1014M   33M  982M   4% /new_xfs

Step 2 : Unmount the filesystem and make the image of metadump of the filesystem.

[root@vikrant ~]# umount /new_xfs/
[root@vikrant ~]# xfs_metadump /dev/mapper/vg_storage-xfs_check /tmp/xfsimage1.img

Step 3 : Create sparse file of 1GB. As my original filesystem is of 1GB.

[root@vikrant ~]# truncate -s 1G /root/xfsimage.img

Verify the same with below command.

[root@vikrant ~]# ls -lsh /root/xfsimage.img
11M -rw-r–r– 1 root root 1.0G Jan 13 08:16 /root/xfsimage.img

Step 4 : I am restoring the metadata dump to sparse file created in previous step.

[root@vikrant ~]# xfs_mdrestore -g /tmp/xfsimage1.img /root/xfsimage.img
0 MB read

Step 5 : Now we can run the filesystem check on it.

[root@vikrant ~]# xfs_repair -f /root/xfsimage.img
Phase 1 – find and verify superblock…
Phase 2 – using internal log
– zero log…
– scan filesystem freespace and inode maps…
– found root inode chunk
Phase 3 – for each AG…
– scan and clear agi unlinked lists…
– process known inodes and perform inode discovery…
– agno = 0
– agno = 1
– agno = 2
– agno = 3
– process newly discovered inodes…
Phase 4 – check for duplicate blocks…
– setting up duplicate extent list…
– check for inodes claiming duplicate blocks…
– agno = 0
– agno = 1
– agno = 2
– agno = 3
Phase 5 – rebuild AG headers and trees…
– reset superblock…
Phase 6 – check inode connectivity…
– resetting contents of realtime bitmap and summary inodes
– traversing filesystem …
– traversal finished …
– moving disconnected inodes to lost+found …
Phase 7 – verify and correct link counts…

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s